handyspark.ml package¶
Submodules¶
handyspark.ml.base module¶
-
class
handyspark.ml.base.HandyFencer[source]¶ Bases:
pyspark.ml.base.Transformer,handyspark.ml.base.HasDict,pyspark.ml.util.DefaultParamsReadable,pyspark.ml.util.DefaultParamsWritableFencer transformer for capping outliers according to lower and upper fences.
-
fences¶ dict – The fence values for each feature. If stratified, first level keys are filter clauses for stratification.
-
fences
-
-
class
handyspark.ml.base.HandyImputer[source]¶ Bases:
pyspark.ml.base.Transformer,handyspark.ml.base.HasDict,pyspark.ml.util.DefaultParamsReadable,pyspark.ml.util.DefaultParamsWritableImputation transformer for completing missing values.
-
statistics¶ dict – The imputation fill value for each feature. If stratified, first level keys are filter clauses for stratification.
-
statistics
-
-
class
handyspark.ml.base.HandyTransformers(df)[source]¶ Bases:
objectGenerates transformers to be used in pipelines.
Available transformers: imputer: Transformer
Imputation transformer for completing missing values.- fencer: Transformer
- Fencer transformer for capping outliers according to lower and upper fences.
-
class
handyspark.ml.base.HasDict[source]¶ Bases:
pyspark.ml.param.ParamsMixin for a Dictionary parameter. It dumps the dictionary into a JSON string for storage and reloads it whenever needed.
-
dictValues= Param(parent='undefined', name='dictValues', doc='Dictionary values')¶
-
setDictValues(value)[source]¶ Sets the value of
dictValues.
-
Module contents¶
-
class
handyspark.ml.HandyFencer[source]¶ Bases:
pyspark.ml.base.Transformer,handyspark.ml.base.HasDict,pyspark.ml.util.DefaultParamsReadable,pyspark.ml.util.DefaultParamsWritableFencer transformer for capping outliers according to lower and upper fences.
-
fences¶ dict – The fence values for each feature. If stratified, first level keys are filter clauses for stratification.
-
fences
-
-
class
handyspark.ml.HandyImputer[source]¶ Bases:
pyspark.ml.base.Transformer,handyspark.ml.base.HasDict,pyspark.ml.util.DefaultParamsReadable,pyspark.ml.util.DefaultParamsWritableImputation transformer for completing missing values.
-
statistics¶ dict – The imputation fill value for each feature. If stratified, first level keys are filter clauses for stratification.
-
statistics
-